数学常用公式

三角函数

基本函数

缩写

基本关系

正弦函数

\(\sin\)

余弦函数

\(\cos\)

正切函数

\(\tan\)

\(\tan \alpha=\frac{\sin \alpha}{\cos \alpha}\)

余切函数

\(\cot\)

\(\cot \alpha=\frac{1}{\tan \alpha}\)

正割函数

\(\sec\)

\(\sec \alpha=\frac{1}{\cos \alpha}\)

余割函数

\(\csc\)

\(\csc \alpha=\frac{1}{\sin \alpha}\)

首先有以下基本关系:

  1. \(\sin^2x + \cos^2 = 1\)

  2. \(\tan^2x + 1 = sec^2x\)

  3. \(\cot^2x+1=\csc^2 x\)

和差公式:

  1. \(\cos{(\alpha+\beta)}=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)

  2. \(\cos{(\alpha-\beta)}=\cos\alpha\cos\beta+\sin\alpha\sin\beta\)

  3. \(\sin{(\alpha+\beta)}=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)

  4. \(\sin{(\alpha-\beta)}=\sin\alpha\cos\beta-\cos\alpha\sin\beta\)

  5. \(\tan{(\alpha+\beta)}=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\)

  6. \(\tan{(\alpha-\beta)}=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}\)

和差化积:

  1. \(\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\)

  2. \(\sin\alpha-\sin\beta=2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}\)

  3. \(\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\)

  4. \(\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\)

积化和差:

  1. \(\cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)]\)

  2. \(\sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]\)

  3. \(\cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)]\)

  4. \(\sin\alpha\sin\beta=-\frac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)]\)

倍角公式:

  1. \(\sin 2\alpha=2\sin\alpha\cos\alpha=\frac{2}{\tan\alpha+\cot\alpha}\)

  2. \(\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha\)

  3. \(\tan 2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}\)

半角公式:

  1. \(\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}\)

  2. \(\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}\)

  3. \(\tan\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}=\frac{\sin\alpha}{1+\cos\alpha}\)

降幂公式:

  1. \(\sin^2\alpha=\frac{1-\cos 2\alpha}{2}\)

  2. \(\cos^2\alpha=\frac{1+\cos 2\alpha}{2}\)

  3. \(\tan^2\alpha=\frac{1-\cos 2\alpha}{1+\cos 2\alpha}\)

另外,在高等数学中不要忘记“奇变偶不变,符号看象限”,例如:

1

\[\begin{split}& \lim\limits_{x\to 1}(1-x)\tan\frac{\pi x}{2} \\ \text{令} t & =x-1 \\ \text{原式} & = \lim\limits_{t\to 0}(-t)\tan\frac{\pi}{2}(x-1)\\ & = \lim\limits_{x\to 0}t\cot\frac{\pi}{2} \\ & = \lim\limits_{x\to 0}\frac{t}{\tan\frac{\pi}{2}t} \\ & = \lim\limits_{x\to 0}\frac{t}{\frac{\pi}{2}}t \\ & = \frac{2}{\pi}\end{split}\]
1

ISBN:9787309145885 P6