数学常用公式
三角函数
基本函数 |
缩写 |
基本关系 |
|---|---|---|
正弦函数 |
\(\sin\) |
|
余弦函数 |
\(\cos\) |
|
正切函数 |
\(\tan\) |
\(\tan \alpha=\frac{\sin \alpha}{\cos \alpha}\) |
余切函数 |
\(\cot\) |
\(\cot \alpha=\frac{1}{\tan \alpha}\) |
正割函数 |
\(\sec\) |
\(\sec \alpha=\frac{1}{\cos \alpha}\) |
余割函数 |
\(\csc\) |
\(\csc \alpha=\frac{1}{\sin \alpha}\) |
首先有以下基本关系:
\(\sin^2x + \cos^2 = 1\)
\(\tan^2x + 1 = sec^2x\)
\(\cot^2x+1=\csc^2 x\)
和差公式:
\(\cos{(\alpha+\beta)}=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
\(\cos{(\alpha-\beta)}=\cos\alpha\cos\beta+\sin\alpha\sin\beta\)
\(\sin{(\alpha+\beta)}=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)
\(\sin{(\alpha-\beta)}=\sin\alpha\cos\beta-\cos\alpha\sin\beta\)
\(\tan{(\alpha+\beta)}=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\)
\(\tan{(\alpha-\beta)}=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}\)
和差化积:
\(\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\)
\(\sin\alpha-\sin\beta=2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}\)
\(\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\)
\(\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\)
积化和差:
\(\cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)]\)
\(\sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]\)
\(\cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)]\)
\(\sin\alpha\sin\beta=-\frac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)]\)
倍角公式:
\(\sin 2\alpha=2\sin\alpha\cos\alpha=\frac{2}{\tan\alpha+\cot\alpha}\)
\(\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha\)
\(\tan 2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}\)
半角公式:
\(\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}\)
\(\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}\)
\(\tan\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}=\frac{\sin\alpha}{1+\cos\alpha}\)
降幂公式:
\(\sin^2\alpha=\frac{1-\cos 2\alpha}{2}\)
\(\cos^2\alpha=\frac{1+\cos 2\alpha}{2}\)
\(\tan^2\alpha=\frac{1-\cos 2\alpha}{1+\cos 2\alpha}\)
另外,在高等数学中不要忘记“奇变偶不变,符号看象限”,例如:
- 1
ISBN:9787309145885 P6