######################################## 数学常用公式 ######################################## 三角函数 **************************************** +----------+--------------+-----------------------------------------------------+ | 基本函数 | 缩写 | 基本关系 | +==========+==============+=====================================================+ | 正弦函数 | :math:`\sin` | | +----------+--------------+-----------------------------------------------------+ | 余弦函数 | :math:`\cos` | | +----------+--------------+-----------------------------------------------------+ | 正切函数 | :math:`\tan` | :math:`\tan \alpha=\frac{\sin \alpha}{\cos \alpha}` | +----------+--------------+-----------------------------------------------------+ | 余切函数 | :math:`\cot` | :math:`\cot \alpha=\frac{1}{\tan \alpha}` | +----------+--------------+-----------------------------------------------------+ | 正割函数 | :math:`\sec` | :math:`\sec \alpha=\frac{1}{\cos \alpha}` | +----------+--------------+-----------------------------------------------------+ | 余割函数 | :math:`\csc` | :math:`\csc \alpha=\frac{1}{\sin \alpha}` | +----------+--------------+-----------------------------------------------------+ 首先有以下基本关系: #. :math:`\sin^2x + \cos^2 = 1` #. :math:`\tan^2x + 1 = sec^2x` #. :math:`\cot^2x+1=\csc^2 x` 和差公式: #. :math:`\cos{(\alpha+\beta)}=\cos\alpha\cos\beta-\sin\alpha\sin\beta` #. :math:`\cos{(\alpha-\beta)}=\cos\alpha\cos\beta+\sin\alpha\sin\beta` #. :math:`\sin{(\alpha+\beta)}=\sin\alpha\cos\beta+\cos\alpha\sin\beta` #. :math:`\sin{(\alpha-\beta)}=\sin\alpha\cos\beta-\cos\alpha\sin\beta` #. :math:`\tan{(\alpha+\beta)}=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}` #. :math:`\tan{(\alpha-\beta)}=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}` 和差化积: #. :math:`\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}` #. :math:`\sin\alpha-\sin\beta=2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}` #. :math:`\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}` #. :math:`\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}` 积化和差: #. :math:`\cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)]` #. :math:`\sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]` #. :math:`\cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)]` #. :math:`\sin\alpha\sin\beta=-\frac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)]` 倍角公式: #. :math:`\sin 2\alpha=2\sin\alpha\cos\alpha=\frac{2}{\tan\alpha+\cot\alpha}` #. :math:`\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha` #. :math:`\tan 2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}` 半角公式: #. :math:`\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}` #. :math:`\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}` #. :math:`\tan\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}=\frac{\sin\alpha}{1+\cos\alpha}` 降幂公式: #. :math:`\sin^2\alpha=\frac{1-\cos 2\alpha}{2}` #. :math:`\cos^2\alpha=\frac{1+\cos 2\alpha}{2}` #. :math:`\tan^2\alpha=\frac{1-\cos 2\alpha}{1+\cos 2\alpha}` 另外,在高等数学中不要忘记“奇变偶不变,符号看象限”,例如: [#odd]_ .. math:: & \lim\limits_{x\to 1}(1-x)\tan\frac{\pi x}{2} \\ \text{令} t & =x-1 \\ \text{原式} & = \lim\limits_{t\to 0}(-t)\tan\frac{\pi}{2}(x-1)\\ & = \lim\limits_{x\to 0}t\cot\frac{\pi}{2} \\ & = \lim\limits_{x\to 0}\frac{t}{\tan\frac{\pi}{2}t} \\ & = \lim\limits_{x\to 0}\frac{t}{\frac{\pi}{2}}t \\ & = \frac{2}{\pi} .. [#odd] ISBN:9787309145885 P6